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Abstract

The Bar±bar Tensile Impact Apparatus (BTIA) is widely used to measure the dynamic tensile properties of solid
materials. In the present paper, a simpli®ed three-dimensional ®nite element model for the BTIA system with a ¯at

specimen is established to simulate the experimental process of a BTIA. The numerical solution for the model is
solved by ADINA. In the scope of elastoplastic theory, the numerical analysis con®rms the validity of the one-
dimensional experimental principle used in the BTIA, as long as certain foundations are satis®ed. # 2000 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Kolsky (1949) ®rst developed the modern Split Hopkinson Pressure Bar (SHPB) apparatus in 1949.

At present SHPB, as shown in Fig. 1, has been widely used to study the dynamic properties of solid

materials. In the 1960's and 1970's, a number of researchers conducted a large amount of theoretical

and experimental research work in order to improve the SHPB technique and extend its usage. Bertholf

(1974) and Bertholf and Karnes (1975) produced a two-dimensional axisymmetric numerical analysis for

SHPB. They studied the in¯uences on the experimental results of the specimen geometry and friction

between the specimen and the input/output bar, and gave the matching relation between the specimen

and the SHPB system that made the experimental measuring principle valid under small friction.

Bertholf's work laid a solid theoretical foundation for the SHPB technique.
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In recent decades, various tensile impact apparatuses have been developed one after another. The
Bar±Bar Tensile Impact Apparatus (BTIA) is the chief form. Xia et al. (1992, 1996) developed the
rotation disk tensile impact test apparatus. As shown in Fig. 1, when the hammer on the high-speed
rotation disk (the disk is not shown in the ®gure) impacts on the block, the short metal bar (made of
aluminum) is broken, which produces an approximately rectangular input stress impulse wave.
Making use of the plastic ¯ow of the short metal bar, the oscillation in the incident impulse,
compared with the general way of using the hammer to impact directly on the block, is ®ltered a
great deal. This technique can make the incident impulse very smooth, which enhances the accuracy
of the experimental results.

The experimental principle of BTIA is the same as that of SHPB when ignoring the di�erence of the
incident impulse between BTIA and SHPB. The principle can be expressed by the Lagrange X±T sketch
(shown in Fig. 1) which is based on the assumptions that:

1. stress wave propagation in the input/output bar is elastic and one-dimensional,
2. the stress and strain in the testing region of the specimen must be uniform and be under a

unidirectional stress state.

According to the one-dimensional elastic stress wave theory, the predicted stress s(t ), predicted strain
e(t ) and predicted strain-rate _e�t� in the specimen can be given by (Xia et al., 1996; Chen et al., 1995)

Fig. 1. BTIA and SHPB and the Lagrange X±T sketch of the 1-D experimental measuring principle.
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Because ei(t )+er(t )=et(t ), Eqs. (1)±(3) can be simpli®ed to
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et�t�, �4�
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0
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_e�t� � C0

ls
�ei�t� ÿ er�t�� �6�

where As and ls are the cross-sectional area and the length of the testing region of the specimen,
respectively (Fig. 2). C0, A and E are the one-dimensional elastic stress wave velocity, the cross-sectional
area and Young's modulus of the input/output bars, respectively. ei, er and et are the incident strain
signal and re¯ective strain signal in the input bar and the transmitted strain signal in the output bar
measured by strain gauges, respectively.

In BTIA, two kinds of specimen and two methods of connection between specimen and input/output
bar are used. The ®rst uses a dumb-bell shaped cylindrical specimen, which should be connected to the
input/output bar by a thread on the specimen. The other method uses a dumb-bell shaped ¯at specimen,

Fig. 2. Dumb-bell-shaped ¯at specimen and gluing connection.
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which should be connected by glue. Compared with the SHPB system, in the BTIA system, the
specimen and its connection with the input/output bars are more complicated, which may cause certain
deviation from the assumptions adopted in the 1-D measuring principle.

Recently, we gave a two-dimensional axisymmetric numerical analysis for the BTIA system where
dumb-bell shaped cylindrical specimens and threaded connections are used, and demonstrated the
validity of the 1-D experimental measuring principle in the scope of elastoplastic theory (Wang et al.,
1999; Wang, 1996). In that analysis, the threaded connection between the specimen and the input/output
bar was assumed to be an ideal one (i.e. the displacements of both sides of the interfaces between the
specimen and bar are compatible). During the actual experiment, the threaded connection often
produces a larger predicted strain than the actual strain and may cause a non-constitutive oscillation in
the s(t ) and s±e curves (especially near the yield point). So, although the numerical analysis con®rmed
the validity of the one-dimensional principle used in the system, technical di�culties may hinder its
usage.

At present, the authors' research group has adopted the second kind of specimen and the second
method of connection, in which the dumb-bell shaped ¯at specimen is connected to the input/output bar
with glue (Fig. 2) (Xia et al., 1996; Chen et al., 1995; Harding et al., 1982); a great number of
experimental results con®rmed its reliability. It is the objective of this paper to theoretically demonstrate
the validity of the one-dimensional principle adopted in a BTIA using this kind of specimen and
connection. However, the BTIA with a dumb-bell shaped ¯at specimen is more complicated and must
use a three-dimensional dynamic FEM numerical analysis.

In the present paper, a simpli®ed plane-symmetrical three-dimensional ®nite element model for a
BTIA with a dumb-bell shaped ¯at specimen made of an elastoplastic material is ®rst established. The
numerical solution for the system under a stress impulse load on the left end-surface of the input bar is
obtained by ADINA. In the scope of elastoplastic theory, the above mentioned principle can be
demonstrated.

The process of demonstration is as follows. First, the constitutive relation of the specimen material
selected for the simulative analysis in advance is called the `input constitutive relation'. Second, through
numerical solution of BTIA, the strain signals at the gauge positions on the input/output bar can be
obtained. Using these strain signals, the predicted values of the specimen can be calculated, respectively,
by Eqs. (1)±(3) or Eqs. (4)±(6). Third, through the numerical solution, the average values of the stress,
strain and strain rate in the middle of the testing region of the specimen can be directly obtained, which
are called the `actual values' of the stress, strain and strain rate of the specimen. Thus, through
calculation, one obtains two constitutive relations: the predicted one and the actual one. By comparison
of these two relations and of the predicted values (stress and strain) with the actual ones, the validity of
the one-dimensional experimental measuring principle can be demonstrated and discussed.

2. Three-dimensional ®nite element model and ADINA program

2.1. Three-dimensional ®nite element model

The BTIA with a ¯at specimen is simpli®ed as a three-dimensional plane-symmetric model (shown in
Fig. 3). G1, G2 and G3 in Fig. 3 are three gauges on the input/output bars. The specimen which is made
of elastoplastic material, is a ¯at dumb-bell shape consisting of a testing region, two connecting regions
and two additional transitional ®llets at the roots. A stress impulse (P=s0f(t ), in which f(t ) is shown in
Fig. 4) is uniformly applied on the end-surface of the input bar.

The stress on the right end-surface of the output bar and the other surface, i.e. the side surface and
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the surface at the varying section (L and R) are free. The force equilibrium and the continuous
displacement condition at the interfaces between the specimen and bars are satis®ed.

Due to the di�culties in constructing meshes near to the notches (Fig. 2), the model is simpli®ed
further as follows. The specimen (including the connecting and testing regions) is assumed to be under a
plane-stress state, which is because the specimen is very thin and the stress wave propagating in the
system is mainly longitudinal. The connection parts of the system (shown in Fig. 3 as part A to L and
part R to A), which consist of the connection region of the specimen and end parts of the input/output
bars, are simpli®ed as cylinders without notch and with the same cross section as the bar, of which the
physical parameters (density, Young's modulus, Poisson's ratio) can be calculated by mixed law:

Fig. 3. Three-dimensional plane-symmetric model. (a) A part of the dumb-bell-like ¯at specimen. (b) Connection between the speci-

men and the input bar.

Fig. 4. Impulse load function f(t ).
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X 0 �
�
pR2 ÿ 2RT

pR2

�
X, �7�

where R is the radius of the input/output bars, T is the thickness of the specimen, X ' and X represent
the equivalent parameters and the original parameters of the input/output bars in the connecting
regions, respectively.

Based on the above simpli®cation, the meshes of the model can be divided into the following parts:
specimen, input/output bars and connection parts. The specimen mesh is constructed by 300 four-node
and three-node plane-stress elements. The input/output bars are discretized by 1240 eight-node and six-
node brick elements. The connection parts are discretized by 300 eight-node and six-node brick
elements. Note that, for the specimen, the meshes of the specimen's connection region are the same as
those of the YZ-plane of the connecting parts. Parts of the meshes for the model are present in Fig.
5(a,b).

The bars are made of a homogeneous isotropic linear elastic material. The Young's modulus (E ),
mass density (r ) and Poisson ratio (n ) of the bars are shown in Table 2. A strain rate independent
material (LY12cz Aluminum) is chosen as the specimen material in the present paper to avoid the e�ects
of strain rate. Its constitutive relation can be simpli®ed to form a hardening model (see Fig. 5) and the
1-D constitutive equation is

sy �
�
Ee s < ss

ssj�e� srss
, �8�

where E is Young's modulus, sy is yield stress and j(e ) is a rising and de®nitive function as e increases.
The deviatonic stress, Sij, is limited by the Von Mises yield condition

SijSijR
2

3
s2y, �9�

Fig. 5. Finite element meshes of the region near the connecting region and the testing region. (a) A part of the dumb-bell-like ¯at

specimen. (b) Connection between the specimen and the input bar.
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where Sij is

Sij � sij ÿ smm

3
dij

and

smm �
X
m

smm: �10�

2.2. Finite element ADINA program and its evaluation

The ®nite element program ADINA (Bathe, 1982, 1981) is used for numerical analysis in the present
paper. Here, the implicit Newmark algorithm for integrating the governing equation with respect to time
is employed. The spatially discretized equations of motion can be written as:

�M � �u� �K �u � f, �11�
where [M ] is the total consistent mass matrix, [K ] is the total sti�ness matrix, u and uÈ are displacement
and acceleration vectors, respectively and f is the external force vector.

In the implicit Newmark algorithm, the following assumptions are made:

t�Dt _u �t _u�
�
�1ÿ d�t �u� dt�Dt �u

�
Dt �12�

and

t�Dtu �t u�t _uDt�
��

1

2
ÿ a

�
t �u� at�Dt �u

�
Dt, �13�

where, a and d are two parameters to control the precision and stability of integration and d=0.54,

Fig. 6. Constitutive relation of the specimen material. (a) Non-homogenous bar. (b) Stress impulse function.
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a=0.25(0.5+d)2 are selected, which are proved to be suitable for the problem of the present paper by
many evaluation examples.

Although ADINA (Wang, 1996; Wang et al., 1996, Wang et al., 1998; Wang and Xia, 1998) gave
many detailed evaluations of solving dynamic nonlinear problems by the ®nite element method and the
ADINA program, due to the complexity of the above-mentioned dynamic problem with several physical
and geometric discontinuous faces, the feasibility of solving the dynamic problem by the ®nite element
ADINA program has to be checked. Below is one of the samples we used for evaluating the program.

Fig. 7(a) shows a non-homogenous bar with interior interfaces which consists of an input bar with
round cross-section and an output bar with rectangular cross-section. The plane (z=L1ÿL3) and the
plane (x=T/2) are called the interior interfaces. The full region L3 is called the connecting region and its
relevant parameters are shown in Table 1. The left end-surface of the input bar is applied by a uniform
stress impulse (sz=s0f(t ), s0=0.2 GPa and f(t ) is shown in Fig. 7(b) with 10 ms rise time). The model is
stationary at initial time.

The simpli®cation the meshes of the model are similar to those in Section 2.1. Suppose that the
Poisson's ratio of the model is zero (n1=n2=0), i.e. neglecting the transverse inertia of the model.
Through the numerical analysis by the ®nite element ADINA program, the axial stress at two points (z
=120 mm and z=360 mm) on the surface of the bar are shown in Fig. 8.

As a comparison, the system is analyzed by means of the one-dimensional analysis method. The input
bar, the connecting region and the output bar in the model are de®ned as regions I, II and III,
respectively. Here, region II is simpli®ed as an equivalent homogenous material and its relevant material
parameters can be gained by the mixed law: x=V1 x1+V2x2, where x is the equivalent parameter, V1

and V2 are the volume fractions of material x1 and material x2, respectively. According to the 1-D stress
wave theory, after the stress wave is re¯ected and transmitted n times through the connecting region, the
stresses in region I and region III can be obtained (Wang and Xia, 1998) as follows:

s�n�1 �
"
�1� b12� � a21b23a12

Xn
m�1
�b21b23�mÿ1

#
s0 �14�

Fig. 7. Model for the non-homogenous bar with interior interfaces. (a) Non-homogenous bar. (b) Stress impulse function.
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and

s�n�3 �
"Xn�1

m�1
a12a23�b21b23��mÿ1�

#
s0, �15�

where, a12, a23 and a21 are the transmission parameters of a stress wave transmitted from region I to
region II, from region II to region III and from region II to region I, respectively. û12, û23 and û21 are
the re¯ection parameters of a stress wave re¯ected from region I to region II, from region II to region
III and from region II to region I, respectively; s0 is the incident stress impulse. The one-dimensional
solution for the problem is also shown in Fig. 8.

Fig. 8 shows that the 3-D numerical result is nearly the same as the 1-D equivalently simpli®ed
solution, which con®rms the feasibility of analysing the BTIA dynamic system with several physical and
geometric discontinuous faces by the ®nite element method and the ADINA program.

3. Demonstration of the validity of the 1-D experimental measuring principle

As the connecting region forms a full transverse constraint in the roots of the testing region, in
general, the length-to-width ratio of the testing region in BTIA (Xia et al., 1989, 1992, 1993) is rather
bigger than that in SHPB in order to ensure a good unidirectional stress ®eld in the testing region.
Hence, in the present paper, we select the geometric and physical parameters of the specimen and the

Table 1

Relevant parameters of the bar

E (GPa) r (Kg/m3) n (mm) L (mm) R (mm) W (mm) T (mm)

Input bar 200 8000 0.0 240 6

Flat bar 50 2000 0.0 240 3 1

Fig. 8. Stress history at two special positions in the bar.
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input/output bar as listed in Table 2. Through the implementation of ADINA, the strain signals (shown
in Fig. 1) at the gauge positions G1, G2 and G3 can be obtained (shown in Fig. 9).

3.1. Stresses and strains distributions in the testing region of the specimen with ®llets

The stress and stain distributions and the ratio of the maximum non-axial stress to the average axial
stress in the testing region at t = 140 ms (when the testing region is in the plastic state and the strain
value in the middle of testing region is about 3%) are summarized in Figs. 10 and 11. Where smax

z �emax
z �

represents the maximum axial stress (strain), max(sij ) represents the maximum non-axial stress and
�sz��ez� represents the average stress and strain in the corresponding cross-section, respectively. Fig. 10(a)
indicates that along the longitudinal direction, the values of �smax

z ÿ �sz�= �sz, max�sij �= �sz and �emax
z ÿ �ez�=�ez

in 85% of the testing region are less than 5%.
The ratio of the average axial stress (strain) in the testing region to the axial stress (strain) in the mid

cross-section of the testing region at t=140 ms are summarized in Fig. 10(b), where �sz��ez� represents the

Table 2

Geometric parameters and material parameters of the model

Material parameters of the model E (GPa) r (kg/m3) n

Input/output bars 200 8000 0.25

Specimen 70 2700 0.32

Geometric parameters of the model

Input bar (mm) Output bar (mm) Testing region (mm) Connecting region (mm) Fillet (mm) Specimen's thickness (mm)

L1=360 L2=360 l=12 L4=26 R=1 t=1

R1=6 R2=6 w=3 a1=120 a2=240 a3=120

Fig. 9. Strain signals on the input/output bar.
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average axial stress (strain) and �smid
z ��emid

z � represents the average axial stress (strain) in the middle cross-
section of the testing region, respectively. Fig. 10(b) indicates that along the longitudinal direction, the
value of � �szÿ �smid

z �= �smid
z in 95% of the testing region is less than 5% and the value of ��ezÿ �emid

z �=�emid
z in

75% of the testing region is less than 5%.
The uniformity of stress and strain in the testing region with respect to time is summarized in Fig. 11,

where �smax
z ��emax

z � represents the maximum average axial stress (strain) among various cross-sections in
the testing region. �stot

z ��etot
z � represents the average axial stress (strain) in the testing region. Fig. 11

Fig. 10. Uniformity of stress and strain, and unidirectionality of stress in the testing region.

C.Y. Wang, Y.M. Xia / International Journal of Solids and Structures 37 (2000) 3305±3322 3315



indicates that the axial stress (strain) distribution is non-uniform in the beginning microseconds after the
stress (strain) wave approaches the testing region while, after several microseconds, during which the
waves re¯ect and transmit in the testing region, the distributions become uniform. Therefore, the
nonuniformity of stress (strain) in the testing region hardly has any in¯uence on the experimental
results.

As analyzed above, it is clear that when the middle of the testing region has a suitable length-to-width
ratio, its stress and strain ®elds are approximately uniform and under a unidirectional stress state. The
axial stress is rather greater than the non-axial stresses. The non-uniform stress and strain regions are
only located in the roots of the testing region. In a word, the assumptions (i.e. the uniformity of stress
and strain under a unidirectional stress state in the middle of the testing region except ®llets) in the 1-D
experimental measuring principle can be approximately satis®ed for the specimen with matched
geometric sizes. Thus, the average values of the physical parameters, such as strain, stress etc., in the
middle of the testing region obtained by the numerical analysis can be regarded as the actual values of
the corresponding physical parameters of the specimen.

3.2. Distortion of cross-sections (L and R) and the stress concentration in the roots of the testing region
and its elimination

Here, the model without ®llets is also analyzed and its numerical results are compared with those of
the model with ®llets.

Figs. 12 and 13 show the displacement distribution on the L and R cross-sections at t=140 ms, which
indicates that, compared with the specimen with ®llets, the distortion of the cross-sections is more
remarkable for the specimen without ®llets.

Fig. 14 shows the stress distribution on the L and R cross-sections at t = 140 ms and indicates that
dramatic stress concentration exists in the concave location of the roots of the testing region for the
model without ®llets while, for the model with ®llets, the stress concentration in the roots of the testing
region disappears.

Fig. 11. Uniformity of stress and strain with time.
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3.3. The comparison of the predicted values with the actual values (stress, stain and strain rate)

The comparison of the actual values and the predicted values (such as stress, strain, and strain-rate
and constitutive relation) obtained from Eqs. (4)±(6) for the specimens with and without ®llets is
summarized in Figs. 15±18.

Fig. 15 shows that the predicted stress coincides well with the real stress, regardless of whether the
specimen has ®llets or not, which indicates that the ®llets have little in¯uence on the precision of the
predicted stress. However, only the specimen with ®llets can be adopted in the actual tensile impact
experiment in order to avoid the specimen breaking at the roots of the testing region.

Fig. 16 shows that for the specimen without ®llets, the predicted strain is greater than the actual
strain and the di�erence becomes bigger as time increases, but for the specimen with ®llets, the predicted
strain is identical with the actual strain. This is because the predicted strain is dependent on the relative
displacements between the L and R cross-sections and the length of the testing region. If the specimen
has no ®llets, both the distortion on the L and R cross-section and the relative displacements between
them are slightly larger. Thus, in order to reduce the di�erence between the predicted and actual stain,
the distortion on the L and R cross-sections must be reduced (but the distortion cannot be eliminated
completely) and the rigidity in the roots of the testing region must be strengthened to partially
counteract the relative displacement between the L and R cross-sections. The method of adding the
®llets can achieve these above mentioned aims.

Fig. 12. Axial displacement along OY-direction on cross-sections (L and R).

Fig. 13. Axial displacement along OX-direction on cross-sections (L and R).
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Fig. 17 shows that the predicted constitutive relation coincides with the real constitutive relation

for the specimen with ®llets. Fig. 18 indicates that the predicted strain-rate for the specimen with

®llets and the BTIA test can be approximately considered as a constant strain-rate test (strain rate is

590/s).

Fig. 14. Stress distribution along OY-direction on cross-sections (L and R).

Fig. 15. Specimen stress history.
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3.4. In¯uence of the strain-rate on the predicted stress and strain

By way of changing the amplitude s0 in P=s0f(t ), the strain rates of the simulative tests can be
changed. For the above mentioned model with ®llets, the BTIA testing process at di�erent strain rate
are simulated by selecting di�erent input impulse amplitudes (s0=0.1 GPa, 0.15 GPa and 0.25 GPa).
The simulative experimental results are listed in Figs. 19 and 20, in which curves 1, 2 and 3 are for
the di�erent amplitudes (s0=0.1 GPa, 0.15 GPa and 0.25 GPa correspond to strain rates of 350/s, 590/s
and 1000/s, respectively).

From Figs. 19 and 20, the strain-rate has little in¯uence on the predicted stress and the in¯uences are
mainly concentrated near to the initial yield. The agreement between predicted and actual strains
decreases when the strain rate increases. For the case of the 1000/s strain-rate, the predicted stress is
more than the actual stress in the stage of the initial yield. This is because the higher the strain-rate, the

Fig. 16. Specimen strain history.

Fig. 17. Specimen stress±strain relation.
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larger the in¯uence of the connecting region on the predicted stress. In order to improve the predicted
stress, the length of the connecting region is changed to 15 mm. The BTIA test with the 1000/s strain-
rate is numerically simulated again, and the result (curve 4) is shown in Figs. 19 and 20. The
comparison of curve 4 with curve 1 indicates that the predicted stress is improved. In addition, Fig. 20
indicates that, in general, the strain-rate slightly in¯uences the predicted strain.

3.5. Foundations for the validity of the 1-D experimental principle

All of the analyses in the above sections indicate that the one-dimensional measuring principle
adopted in a BTIA is valid. The foundations making the principle valid can be concluded as follows:

Fig. 18. Strain-rate history.

Fig. 19. Specimen stress history.
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1. A uniform stress and strain region, existing within a unidirectional stress state, must be formed in the
middle of the testing region.

2. By adding ®llets in the roots of the testing region, the stress concentration in the roots can be
partially eliminated. Meanwhile, adding ®llets can debase the distortion of the L and R cross-sections,
so as to reduce and counteract the relative displacement between them. Thus, the precision of the
predicted stain is improved.

3. The average value of stress and strain (the actual value) in the uniform middle of the testing region
should coincide with the predicted value.

4. Conclusions and recommendations

1. In the scope of elastoplastic theory, the present paper preliminary demonstrates the validity of the
1-D experimental principle, con®rms that the assumptions in the 1-D experimental measuring
principle are approximately satis®ed and gives foundations for the validity of the 1-D experimental
principle.

2. In order to make the 1-D experimental principle valid, it is essential to rationally select the specimen
shape and geometric size. The matched relations between the specimen's geometric size and the
experimental system can be found through the numerical simulation. Due to limited space, this
problem is not discussed in the present paper.

3. In the present paper, since the connection between the dumb-bell-like ¯at specimen and the input/
output bar in the model is simpli®ed, the in¯uence of the glue layer on the 1-D experimental
measuring principle is not considered in the model. In addition, the simpli®cation of the
connecting regions and the specimen may have an e�ect on the predicted strain. These will be
studied further.

Fig. 20. Specimen strain history.
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